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Kicked rotator for a spin-: particle 

R Scharft 
Universita Degli Studi Di Milano, Via Celoria 16, 20133 Milano, Italy 

Received 7 March 1989, in final form 19 May 1989 

Abstract. The kicked rotator for a spin-; particle is introduced and mapped to a tight 
binding model for a spin-f particle. The influence of time reversal invariance is explained 
and the symplectic kicked rotator is defined. It is shown that for special values of parameters 
a resonance effect leads to delocalised eigenfunctions of the spin-f rotator in the same 
way as in the case of the well known spin-0 kicked rotator. The infinite-dimensional 
eigenvalue problem can then be mapped to a finite-dimensional one. Spectral properties 
are investigated: the maximal degree of level repulsion, depending on the anti-unitary 
symmetries of the dynamics, and the Shannon entropy of the eigenvectors, measuring their 
localisation properties, which shows a scaling behaviour similar to the one recently found 
for the spin-0 kicked rotator. 

1. Introduction 

The kicked quantum rotator was launched a decade ago (Casati er a1 1979). Since 
then it kept surprising us with new and unforeseen features: dynamic localisation 
with quasiperiodic dependence of the energy on time or resonant behaviour with 
quadratic energy growth in time-depending on the choice of the parameters-both 
in contradiction to the deterministic diffusion of the classical kicked rotator with 
its linear energy growth; the formal equivalence to the tight binding model with 
diagonal disorder, showing Anderson localisation (Fishman et a1 1982) ; the possibility 
of breaking the dynamic localisation by weak dissipation (Dittrich and Graham 1988) 
with the seemingly paradoxical effect that weak dissipation leads to unbounded growth 
of energy. Recently, scaling properties of the quantum rotator have been found 
and investigated (Izrailev 1988, Fishman et a1 1988, Casati et a1 1989b). Especially 
in the above mentioned case of resonant behaviour with extended eigenstates and 
continuous spectrum when Bloch’s theorem applies, the eigenvectors, upon changing 
some perturbation parameter K ,  show an interesting additional delocalisation transition 
within one lattice period. Deep similarities between this scaling and the finite size scaling 
of the Anderson transition were recognised by Casati et al (1989b). 

All this seems not to exhaust the interesting features of the model. As the localisa- 
tion-delocalisation transition is accompanied by a drastic change of the statistical 
features of the spectrum of the rotator, scaling behaviour of the spectrum itself 
was supposed and is under investigation. Upon increasing K the nearest-neighbour 
spacing distribution of the eigenvalues of the rotator for fixed Bloch number a, for 
example, shows a characteristic transition from (nearly) Poissonian type, with only 
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negligible repulsion in the localised case, to Wigner type with strong repulsion in 
the completely delocalised case. The latter can be described by random matrix theory 
(RMT) taking ensembles of unitary matrices of certain rank and (anti-unitary) symmetry. 
Three ensembles are generic, the so-called circular orthogonal, unitary and symplectic 
ensembles (COE, CUE and CSE, respectively) which have been introduced by Dyson 
(1962). The most prominent difference between these three ensembles is their different 
degree of eigenphase repulsion, namely linear (COE), quadratic (CUE) and quartic (CSE). 
Realisations for all three classes have already been found in the form of strongly kicked 
spin dynamics with non-integrable classical limit (Scharf et al 1988) (see also Caurier 
and Grammaticos (1989) for autonomous realisations). But these spin systems do not 
show any kind of Anderson localisation that might change the behaviour in a scale 
invariant way. Therefore the construction of modified kicked rotators which show 
quadratic and quartic level repulsion in the limit of complete delocalisation became 
an interesting goal. This has partially been fulfilled by a modified kicked rotator 
without (generalised) time-reversal invariance (Izrailev 1986), which shows quadratic 
level repulsion. A transition to linear repulsion upon decreasing the strength of the kick 
was observed stemming from a partial localisation of the eigenfunctions, and finally 
the Poissonian case was approached for strongly localised eigenfunctions. 

To observe eigenvalue repulsion of quartic degree and to see the full localisation 
induced transition from quartic over quadratic and linear repulsion to Poissonian 
behaviour it is known that the system has to be invariant under time reversal generated 
by a (anti-unitary) time-reversal operator ,Y that squares to -1. This is only possible 
for a system with half-integer spin. An immediate consequence of 9--invariance with 
F2 = -1 is Kramers’ degeneracy, namely: each eigenvalue of the dynamics is twofold 
degenerate. Another motivation for studying the kicked rotator of a spin-; particle 
comes from the equivalence of the standard (spin-0) kicked rotator to a tight binding 
model for a spin-0 particle. As it is known that tight binding models for spin-; 
particles may show new and interesting phenomena (Zanon and Pichard 1988) such as, 
for example, the Anderson transition in two dimensions (Evangelou and Ziman 1988), 
the question arises whether a kicked rotator for a spin-; particle can be constructed 
and mapped to the corresponding tight binding model. Therefore the time has come 
for the spin-; kicked rotator. 

In $ 2  I define the spin-; kicked rotator Hamiltonian and turn to the resonant 
case, which allows one to reduce the original problem with infinite-dimensional Hilbert 
space to a finite-dimensional one by fixing a Bloch number. In $ 3  the general, not 
neccessarily resonant, problem is mapped to a tight binding model via the trick of 
Fishman et a1 (1982) with slight modifications. In $ 4  I investigate the consequences 
of generalised time-reversal invariances and proceed to construct the symplectic kicked 
rotator. In 0 5 the resonant symplectic rotator is investigated whose eigenvalue problem 
can be solved by diagonalising a finite-dimensional unitary matrix. Then it is shown 
how additional unitary symmetries of the propagator of the dynamics, which square to 
-1 and commute with the anti-unitary time-reversal operator F, influence the maximal 
degree of level repulsion in the case of completely delocalised eigenfunctions. The role 
played by the Bloch number is discussed. In $ 6 I present numerical results for the case 
of strongly delocalised eigenfunctions. In $ 7 the transition to exponentially localised 
eigenfunctions is discussed and evidence for scaling behaviour in the spin- ; kicked 
rotator is presented. This paper closes with a discussion and an outlook on related 
questions. 
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2. Kicked rotator for a spin-; particle 

The Hamiltonian for the standard kicked rotator (Casati et al 1979) has the form 

+X 
P2 

H ( t )  = +KV(8)  d ( t - n T )  - n=-x 

with 8 being a 2n-periodic angle, p the conjugate (angular) momentum, V ( 8 )  = V ( 8  + 
2n) the kicking potential. The unitary propagator U that generates the stroboscopic 
quantum map is gained upon integrating H ( t )  over one period T .  Starting the 
integration halfway between two successive kicks brings U in a symmetric form which 
is well suited for symmetry consideration: 

U = exp (-ig) exp (-Ik) . K V  exp ( - i g ) .  

The operator U generates the quantum map 

Since, in the ‘8 representation’ (but see Peierls 1979), p is of the form -itid, it can 
be seen that U contains only two parameters explicitly (besides other ones hidden in 
V ) ,  namely z = AT and k = KIA. Upon choosing T as the unit of time we have z = ft 
and k? = K. The classical limit is achieved by z -+ 0, k -+ CO upon fixing k t  = K .  For 
K N 5 the corresponding classical map shows well developed chaos and deterministic 
diffusion (Lichtenberg and Lieberman 1983). The behaviour of the quantum map is 
also well investigated (Chirikov et al 1981, Eckhardt 1988). 

To proceed to the spin-4 case we have to choose a spinor representation for the 
Hamiltonian. An obvious choice is 

where 1 denotes the (2  x 2)-unit matrix, U = (o,, 02, 03) the vector of the three Pauli 
spin matrices and V ( 0 )  = (Vl,  V2, V3)  a vector composed of three potentials being 
2n-periodic in 8, which is the case for Vo(8), too. Finally V ( 8 ) u  denotes the ‘scalar 
product’ V,o, + V202 + V3a3. The unitary propagator in the symmetric form can be 
written down immediately, setting t = AT, k = KIA and T = 1 as in the spin-0 case: 

U = exp (-i$) exp[-ik(Vo + V u ) ]  exp ( -I- .::) 
suppressing the unit matrices. Using well known properties of the Pauli spin matrices, 
this can be written as 

U = exp (-i;) exp (-ikVo(0)) { 1 cos(k1 V ( 0 ) I )  - i z  I v ((3 sin(k1 V ( 8 ) l ) )  

x exp (-ig) 
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with I V(6')i = 
A numerical approximation to the iteration (2.3) with the help of a fast Fourier 

transform can then be done as in the case of the spin-0 kicked rotator, barring some 
minor modifications. But as we are interested in solving the eigenvalue equation we 
now turn to the resonant case which allows the setting up of a unitary matrix of finite 
rank which can then be diagonalised by standard methods. 

+ V2(6')2 + V3(6')*. 

First we introduce the p eigenbasis, which is also the eigenbasis of U ( k  = 0): 

PIW) = P Y > / W )  ( 2 . 7 ~ )  

and in the '6' representation' (Olw) = y(0) = y ( Q  + 27r): 

This leads to the eigenstates lp,,) = in) with 

(sin) = ~ ~ ( 6 ' )  = exp (in01 n integer (2 .7~)  

as is well known. If we choose a value for T being commensurate with rc in the form 

T = 4rcM/N N , M  relatively prime (2.8) 

we find in the p representation 

(m  + NI U'"1n + N )  = exp[-ait (m  + N ) 2 ]  ( m  + N IFP" In + N)  exp[-iit (n  + N ) 2 ]  (2.9) 

with spinor indices p,a = +1 and (m+NIFP"ln+N) = @::rn being the Fourier transform 
of 

(2.10) 

the pa component of a (2 x 2) matrix function of 6'. Using property (2.8) of z we find 

The apparent periodicity of U in the p representation can now be used to cast 
the eigenvalue problem in finite-dimensional form. The similarity with the resonant 
case for the spin-0 kicked rotator is obvious, and the construction of a corresponding 
unitary (2N x 2N) matrix can be achieved by following the lines given by Chang and 
Shi (1987) for the spin-0 case. Therefore I only sketch the procedure. First we rewrite 
the eigenvalue problem in spinor form 

where p,a = 1-1 and summation over repeated spinor indices is assumed. As U is 
periodic in the p representation, Bloch's theorem holds and the eigenstates {Iy")),=+l - 

have the property 

( m  + N l y " )  = Vi1+N = e-%: (2.13) 
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with the Bloch number a (-71 I a < 7 1 )  giving the condition at the boundary of the 
fundamental lattice period of length N in the p representation. We now define 

I?.- 

(2.14) 
I=-X 

and notice that 

N N 15 t X  

This shows the equivalence of the original infinite-dimensional eigenvalue problem 
to a set of finite-dimensional ones indexed by the continuous parameter a. Diagonalising 
the unitary (2N x 2N) matrix U ( a )  for fixed Bloch number a solves the original 
eigenvalue problem. To calculate U (a)?: explicitly we use the following representation 
of the periodic 8-function 

+ X  271j + a 
N 

271 
exp[il(Ni3 - U ) ]  = - N 

+x 
6 (0 - 

J=-X /=-E 

(2.16) 

which can be easily checked by the means of Fourier transformation. We then find for 
the components of U (a) 

+oc 

U(a):! = 1 exp[-$ir(r2 + s2 ) ] ( r lFp" l s  + NE)e-'"' 
I=-X 

1 2rr 

271 0 

+oc 

= exp[-$it(r2 + s2)] 1 - di3 exp (-ire) F(0)p" 
1=--30 

x exp [i(s + NE)0 - i d ]  

Finally using (2.16) and performing the integral leads to 

(2.17) 

(2.18) 

with ej = (2nj + a)/N and F(0)p" defined by (2.10). The angle b = a/N is restricted to 
-x/N I b < 71,". The diagonalisation of the matrix U ( a )  is now a straightforward 
numerical task. 

3. Mapping to the tight binding model for a spin-; particle 

Fishman et al (1982) mapped the spin-0 kicked rotator to a tight binding model for a 
spin-0 particle. This can be done for the spin-; rotator in an analogous way. Again 
I only sketch the derivation, stressing the necessary modifications in comparison with 
the spin-0 case. Simplifying notation I write 

v = V , l +  vu. (3.1) 
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Now it is more convenient to look at an asymmetric propagator U being unitarily 
equivalent to the one defined by (2.5) 

Introducing state vectors lu;) - and eigenphases + by 

U P " / ~ ; )  = e-'"u$) 
i k V  Po U 

IUP) = [e ] b+) = exPM4 - Ho)l/u$) 

and the symmetrised state 

and writing the unitary kicking operator in the form 

(3.3a) 

(3.3b) 

(3.3c) 

(3.4) 

(the operator W will be constructed explicitly later on), we can express IuP) with the 
help of lu!), namely 

(3.5a) 

and with /U$): 

(3 .21)  

Using the preceding equations yields 

(1 - iW)p'/uu) = 1uP) = exp [i(+ - H,)] 1.:) = exp [i(+ - HO)]  (1 + iW)puIuu). 

And finally 

(3.6) 

The connection with the tight binding model becomes transparent upon writing 
the last equation in the p representation 

tan - - - (mluP)  + (mi Wpulm + n ) ( m  + n/u') = 0 (P 7) 
and introducing the Fourier transform 6 of W 

(3.9) 
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Then (3.8) takes the form 

(3.10) 

This is a tight binding equation for a spin-; particle. plays the role of an 
energy if it is of the form @o = E 1 with real E ,  as is the case for the symplectic model 
that I investigate in the next section. For h = z being incommensurate with .n the term 
tan( ; 4 - $tim2) represents the diagonal disorder term of the tight binding Hamiltonian. 
For the resonant case (2.8), on the other hand, these diagonal terms become periodic in 
m with period N .  This leads to the existence of Bloch states and a continuous spectrum 
of U ,  as has already been shown in the previous section. 

We conclude this section by calculating WP' for a given kicking potential VP'. We 
invert equation (3.4) 

WP' = -[tan ikV]P' = -[tan(;k(Vol + Va))lP" (3.1 1) 

and note for real xo and x = (x1,x2,x3) the spectral decomposition of xo l  + xa is of 
the form 

which leads to 

(3.13) 

as long as 1x1 i: x is not an odd multiple of n/2. Finally we have I o i  

W = -i{tan[;k(Vo + I V I ) ]  + tan[ik(Vo - 1 Vi)]}l 

- ;{ tan[~k(Vo++IV/)]  -tan[;k(V,-IVI)]}Va/lVI (3.14) 

which completes the mapping to the spin-; particle tight binding model. The choice 
V 0 decouples the spin-up and spin-down states and leads to degeneracy. W is 
then virtually the same as for the spin-0 kicked rotator (Fishman et a1 1982) with its 
spin-independent potential. 

4. Time reversal symmetry and the symplectic rotator 

Now we impose restrictions on the unitary propagator U for the spin-; rotator in the 
general case (2.5) as well as in the resonant case (2.18), namely in the form of anti- 
unitary symmetries called generalised time-reversal symmetries (Messiah 1961, Porter 
1965). According to the properties of the (common) classical time reversal a quantum 
time-reversal operator F should act on 8, p and a in the following way: 

~ 6 ~ - 1  = 8 ~ p 3 - 1  = - p  ~ ~ y - 1  = -0. (4.1) 
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It follows that 5 is anti-unitary : 5i2eieF-1 = F [ p ,  eie] Y-l = - [ p ,  YeieF- ' ]  which 
implies that: 3e '"Y-I  = e-ie. In general it holds that 

for arbitrary complex number c. 
After fixing the representation, F can be decomposed into a product of a unitary 

operator and a conjugation operator. If we choose, for example, a representation in 
which the momentum eigenfunctions are of the form cine, then the momentum operator 
is imaginary: p = -iha, (2.7b) and changes sign under conjugation. For the spin-; 
case we fix a spinor representation by choosing the Pauli spin matrices a l ,  o3 real and 
a2 imaginary. Then only a2 will change sign under conjugation. We summarise the 
action of the conjugation operator X ,  in this representation: 

XX,0XX, = 0 X , p X e  = - p  XeaL,Xe = av v = 1,3 

for arbitrary complex number c and arbitrary operator 0. Now we can define the 
time-reversal operator 5, 

5, = exp(jina2)X, = X ,  exp(;ina2). (4.4) 

Fe is anti-linear, as was X,, anti-unitary with the inverse Si' = exp(-iina2)XX,, and 
it generates the following time reversal 

= 8 e P  e 5 B a v F;' = -av (4.5) 9 y - 1  = - p  

for all three Pauli spin matrices (v  = 1,2,3). 

respect to a time-reversal operator 5 (5-invariance for short) means 
For an autonomous dynamics with Hamiltonian H ,  time-reversal invariance with 

As an immediate consequence of this we have: if 5 acts as a conjugation in some 
representation then the eigenfunctions of H are real in that representation. 

For the unitary propagator generated by H we then have 

if we treat t as a real parameter. The time-reversal invariance of a kicked dynamics 
then poses the following condition on its unitary propagator 

Y U 5 - l  = U t .  (4.8) 

One might easily check that the standard kicked rotator is Y-,-invariant as its propa- 
gator (2.2) fulfils condition (4.8) with Y, defined by (4.4). This time-reversal invariance 
can be broken immediately by including terms in U that are linear in p .  But then 
another F-invariance might still exist. 
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For example we look at the kicked rotator for a charged spin-0 particle in a 
magnetic field. The coupling with the field produces terms in the free propagator that 
are linear in p .  We therefore modify the propagator (2.2) 

0 = exp (-1 * ( p 2  4~ + y p )  ) exp (-ikV(8)) exp (4.9) 

with some real, non-zero parameter y. Obviously r? is no longer Y0-invariant. But if 
we choose a time-reversal operator 3 = Fp which differs from Fo only by being a 
conjugation in the p representation, fi might nevertheless be Y-invariant. YP has the 
properties 

Y P P  8F-I = -8 Y p p Y - p ’  = p Y p O t , Y ; I  = --OV (4.10) 

for v = 1,2,3. As one may immediately check, fi fulfils Fpr?F;‘ = ot, if V ( 4 )  = 
V ( 8 ) .  Or, in other words, r? is F,-invariant if V ( 8 )  is an even function of 8. 

Over the past few years numerical evidence has grown for the assertion that, if 
the spectral properties of a unitary propagator U can be described by RMT, the anti- 
unitary symmetries, or F-invariances, fix which of the three ensembles of unitary 
random matrices, mentioned in the introduction (namely COE, CUE or CSE) is relevant 
(Izrailev 1986, 1987, Ku8 et a1 1988, Scharf et a1 1988). In this respect the time-reversal 
operator 3 = Fp is as good as Fo. Both of them are physically reasonable: Yo is 
the ‘standard time-reversal operator’ for a spin-; system and for Fp only the roles of 
p and 8 are exchanged. 

Both time-reversal operators, 3, as well as Yo, have an important property, 
namely they square to -1 : 

= exp(imr2) = -1. 

As an immediate consequence we have that for an arbitrary state vector y in Hilbert 
space the state vector 3~ is orthogonal (Messiah 1961, Porter 1965). If y~ is an 
eigenstate of the F-invariant Hamiltonian H or propagator U ,  then 3 y 1  is an eigenstate 
of H or U ,  respectively, with the same eigenvalue, too. Therefore each eigenvalue is 
twofold degenerate-the well known Kramers degeneracy (Messiah 1961). 

We turn to the question as to which condition the propagator U of the spin-; 
kicked rotator (2.5) has to fulfil to be time-reversal invariant with respect to To or 
FP. First we choose To and show the trivial consequences. 

3 o U F ; 1  = exp exp[ik(Vo(8) - Y(O)a)] exp i- t::) (4.12) 

which is equal to U t  for the trivial case Y (8) = 0, only. As was already mentioned at 
the end of 9 3, the dynamics then factorises into two identical copies, equivalent to the 
spin-0 kicked rotator. Kramers’ degeneracy therefore appears trivially. 
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But if we use Y p  instead, we find non-trivial conditions for f-,-invariance to hold: 

which is equal to U t  in the case 

To appreciate this symmetry a little better we look at the ( 2  x 2)  matrix of the 
potential V = V,l + Ya 

(4.15) 

In this notation (4.14) takes the form 

V(6)P" = poV(-e)-"~-p p,a = f l .  (4.164 

For reasons of completeness we add the Hermiticity condition 

For the Fourier transform of V(0)P" this implies 

The Hermiticity condition (4.16b) takes the form 

(4.17a) 

(4.17b) 

Looking at the definition (3.14) of the potential W one immediately reads off 

w,(-e) = w,(e) w(-e) = +(e). (4.18) 

As it turns out, the potential W possesses the same symmetries as V .  Therefore we 
find for the Fourier transform I@, which is connected with the tight binding model via 
(3.10), the same symmetries as for V given in (4.17): 

I@;" = pa p p y  p,a = *l* (4.19) 

This is the well known symplectic symmetry for the tight binding model (Evangelou 
and Ziman 1988, Zanon and Pichard 1988). 

We end this section with two remarks. First we notice that (4.19) implies that for 
the (2  x 2)  matrix I@, is of the form kkll, and can therefore play the role of an energy 
in the tight binding equation (3.10), as was already mentioned. Then we look at the 
mapping between the symplectic rotator and the symplectic tight binding model with 
diagonal disorder. If the mapping implies their equivalence concerning localisation 
properties of the eigenfunctions (which is still open to discussion even in the case of 
the spin-0 kicked rotator) then the investigation of the symplectic rotator might give 
important clues for the dependence of localisation properties on symmetry. 
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5. The resonant symplectic kicked rotator 

We turn again to the resonant case which was shown in $2  to be equivalent to a 
finite-dimensional problem after fixing the Bloch number a in the range -n I a < n. 
What are the consequences of the time-reversal invariance (with respect to Fp, for 
example) of the propagator U for the (2N x 2 N )  matrix U(a)f: given by equations 
(2.18) and (2.10)? We look at an eigenvector yo of this matrix. The Bloch theorem 
(2.13) written in the p representation tells us that 

Acting on w", the time-reversal operator Fp generates a second eigenvector with the 
same eigenvalue, but orthogonal to the first one. The second eigenvector fulfils the 
Bloch theorem for a different Bloch number, namely -a: 

Therefore F ;aw"  is an eigenvector of the same matrix U ( a )  only for a = 0. This 
implies that only the spectrum of U (a = 0)  shows Kramers' degeneracy. For a # 0 each 
degenerate eigenvalue pair is split into the spectra of U (a )  and U (-a). The spectrum 
of the full, infinite-dimensional eigenvalue problem, embracing the spectra of U (a) for 
all real a, therefore still shows Kramers' degeneracy. 

The assumption that U is Fp-invariant implies that V = V,,l + Va fulfils (4.16a), 
i.e. 

which implies the following connection between U (a)  and U (-a) : 

= p ~ U ( - a ) ; ' , - ~ .  (5.4) 

As equation (5.4) stands, it poses only a symmetry condition on U ( a )  for a = 0. 
In the opposite case, a # 0, it connects two different matrices and has therefore no 
implications for each of their spectra. The only consequence of equation (5.4) is that 
the spectra of U (a )  and U (-a) are identical. If, therefore, U (a) has spectral properties 
of a random unitary (2N x 2N) matrix and does not possess any additional anti- 
unitary symmetry, then the appropriate ensemble is the unrestricted one, namely CUE, 
which yields a quadratic degree of level repulsion (KuH et a1 1987) between the 2N 
eigenphases. 

Things are different in the case a = 0. Now equation (5.4) is an anti-unitary 
symmetry of U(0):  

We again assume that U ( a  = 0) has the spectral properties of a random unitary 
(2N x 2N) matrix with anti-unitary symmetries to be specified. The conditions under 
which this assumption is valid will be checked in the next section. Now we have to take 
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into account that U (0) shows Kramers' degeneracy. The degree of repulsion between 
different (non-degenerate) eigenphases can take on the values 1, 2 and 4, depending 
on the codimension of exact degeneracies that almost-degenerate perturbation theory 
allows to calculate (Kub et ai 1987, Scharf et a1 1988). 

To understand this in simple terms we assume that U ( a  = 0) commutes with 
no, one or two k-independent parity operators, which themselve commute with Y, 
anti-commute among themselves and square to -1. For instance we could think of 
exp(;ino,) for v = 1, 2 or 3. 

First we assume that there is no such parity operator-so the dynamics does 
not possess any rotational symmetry in spin space. Each Kramers degenerate two- 
dimensional subspace must be treated, upon increasing the kick strength k, as one 
entity. The eigenstates y and F y  are 'intertwined'-the literal meaning of symplectic. 
Only in this case without any rotational symmetries in spin space we will call the 
spin-; rotator a symplectic rotator. Therefore 0 4 contains only necessary conditions 
for the symplectic rotator. For an exact degeneracy between different pairs of Kramers 
degenerate eigenvalues to become possible, more conditions have to be fulfilled (the 
codimension is larger) than in the usual case without Kramers' degeneracy. Therefore 
the eigenvalues show a stronger tendency to repel each other. The degree p of level 
repulsion turns out to be 4 (Scharf et a1 1988). 

Things change if there exists one parity W of the kind mentioned. It becomes 
possible to construct a new time-reversal symmetry Y = F W  = W F  of U which 
squares to +l. We assume 

and find for the new time-reversal operator Y 

yuy-' y w u w t y - '  = U +  9 2  = Fwy- 'F2w = 1. (5.7) 

Again almost-degenerate perturbation theory allows one to calculate the codimension 
of the degeneracies between pairs of different eigenvalues (each of them Kramers 
degenerate): p = 2. Although the dynamics possesses a time reversal which squares to 
$1 this does not automatically lead to linear repulsion of the eigenvalues-in contrast 
to the spin-0 rotator. Upon closer inspection it turns out that Y is a time-reversal 
symmetry of U ( 0 )  that allows to split the (2N x 2 N )  matrix U ( 0 )  into two unitary 
( N  x N )  matrices with identical spectra between which Y establishes an anti-unitary 
relation. On the spectra of each of these submatrices the Y-invariance therefore has no 
influence-a situation strongly reminiscent of the previous discussion of the spectrum 
of U ( a )  for a # 0. Again, if one of these submatrices has spectral properties of a 
random unitary (N  x N )  matrix then the appropriate ensemble is the unrestricted one 
(CUE). Quadratic level repulsion (p  = 2) is the consequence. 

Finally, turning to the third case when yet another parity @ exists with the same 
properties (5.6) as W and 

w @ + @ w = o  (5.8) 

then almost-degenerate perturbation theory proves that we have a linear degree of level 
repulsion: p = 1. A second time-reversal operator 9 = F@' can be constructed, having 
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the same properties (5.7) as 9' but not commuting with 9'. Therefore 9'-invariance of 
U is a second anti-unitary restriction upon U ( 0 )  and the first anti-unitary restriction 
upon the two mentioned unitary (N x N) submatrices of U(O), which are now expected 
to have COE properties (p  = 1). 

Some of these predictions have already been verified for kicked tops (Kui et a1 
1987, Scharf et a1 1988). In the next section we check all previous predictions for the 
spin- i rotator numerically. 

6. Nomerical results: the delocalised case 

We choose a potential V(Q)p' which fulfils (4.16) and is of simple form, but nevertheless 
allows for observing all kinds of symmetries which have been discussed in the previous 
section : 

V,(d) = cos(0) V,(e) = U, sin(v8) (6.1) 
with real constants U ,  for v = 1, 2, 3. With this choice, the unitary propagator U ,  given 
by (2.5), is F,-invariant (cf (4.14)). 

We choose K = 5 for the classical kick strength with the consequence that the 
classical motion is strongly chaotic. We then turn to the resonant case (2.8) and choose 
M = 2 and N = 401, which guarantees that the eigenfunctions are strongly delocalised 
over the unperturbed 2N-dimensional basis. For different choices of the coupling 
constants U,, we have diagonalised the unitary (2N x 2N) matrix U ( a )  given by (2.18). 

First we choose U, # 0 for all v. Then the dynamics possesses only 3-invariances 
with F2 = -1 and we expect to find CUE results for a # 0 and CSE results for a = 0, 
as was explained in the last section. 

Figure 1 shows numerical results for the case a # 0. The spectrum of U ( a )  does not 
possess Kramers' degeneracy. The spacing distribution P ( S ) ,  the so-called A-statistics 
A(L),  which measures the stiffness of the spectrum by calculating the deviation of 
the 'spectral staircase' from a straight line over an interval of L mean spacings (see 
for example Eckhardt 1988), as well as the distribution of squared moduli of the 
eigenvector components, v,", follow the CUE predictions quite closely. 

In figure 2 we see that the same holds true for a = 0 and the CSE pedictions, 
although the deviations of the eigenvector distribution from the theoretical prediction 
are statistically significant. The reason for this lies in the fact that we analysed 
the eigenvector components in a very special representation. If we compare two 
Kramers degenerate eigenstates tpJj and Fryu in the p representation, we find lv;I2 = 
I(Fv);'1*. Therefore the occupation probabilities within one Kramers degenerate two- 
dimensional subspace, w," = i(Iv,"12 + i(Sy)E12), (which are the appropriate quantities 
to analyse in the case of Kramers' degeneracy, as they are invariant under arbitrary 
U(2) transformations) fulfil the condition: w," = w;". This symmetry is a restriction 
upon the w," and thereby reduces their fluctuations around their mean value 1/2N. This 
leads to the more pronounced maximum in their histogram in comparison with the 
theoretical distribution for CSE, which is deduced under the asymption that E,,, w," = 1 
is the only restriction upon the w;. 

If we set U, = 0 then the dynamics possesses a parity W ,  = l l exp(+im,)  with the 
following properties 

w,p w: = npn-' = -p  t w,e w, = nen-' = -e 
t W , 6 ,  w, = -6, v = 2,3. t W,o,W1 = o ,  
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Figure 1. Spectral properties of the unitary matrix 
( U g ( a ) )  defined by (2.18), for iV = 401, Bloch num- 
ber a = In2, K = 5 ,  M = 2 (cf (2.8)), k = 79.78 and 
with potential V (cf (6.1)) for 01 = 0.1, 1;2 = 0.2, 
c3 = 0.3. Full curves show the predictions of ran- 
dom matrix theory for the CUE (Eckhardt 1988, KuS 

15 : et al 1988). x: measures the discrepancy between 
: the experimental histogram ( n  - 1 bins containing 

10 - i ten and more events) and the theoretical prediction 
Y (Abramowitz and Stegun 1965). (a )  Spacing dis- 
: tribution P ( S )  for 802 normalised spacings between 
1 adjacent eigenvalues of U ( a )  ( x : ~  = 21.40). ( b )  Delta- 

statistics A(L)  measuring the stiffness of the spectral 
staircase. (c) Distribution of occupation probabilities 

- 
Pi w) 

5 -  

2 3 4 w," = Iu),"~* of the eigenvectors ( x : ~  = 148.9). 0 1 
W 

It clearly follows that 

w,uw; = U w: = -1. (6.3) 

From the discussion in the last section we are led to expect that the spectral statistics 
of U (a = 0) are given by CUE. Figure 3 shows that this is actually the case. 

If we set 0, = u2 = 0 the dynamics possesses other parities, for example W, = 
nexp(~i.rro2),  with the same properties (6.2) and (6.3) as W,.  In addition (5.8) is 
fulfilled : 

W ,  W2 + W, W, = exp(ii.rro,) exp(;i.rro,) + exp(;ixo,) exp(;ina,) = 0. (6.4) 

Therefore the spectral statistics of U (0) should show COE behaviour. Figure 4 confirms 
this, although the fluctions of the spacing distribution and the deviations from the 
theoretical predictions of the A-statistics are larger in this case than in the previous 
ones. Kicked tops showed the same feature, too, which is not yet understood, 

Finally, if we set ul = u2 = u3 = 0 the system factorises into two identical copies 
of the spin-0 kicked rotator. Kramers' degeneracy is fulfilled trivially, Now U 
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Figure 2. The same as figure 1 but for Bloch number 
a = 0. Full curves show the predictions of ran- 
dom matrix theory for the CSE (Scharf er al 1988, 
KuS et al 1988). ( a )  Spacing distribution P ( S )  for 
401 normalised spacings between adjacent Kramers 
degenerate eigenvalues of U ( x : ~  = 6.86). ( b )  Delta- 
statistics A(L) .  (c) Distribution of occupation prob- 
abilities w,“. as defined in the text, for pairs of 
Kramers degenerate eigenvectors in the p represen- 
tation (& = 303.8). 

possesses a parity that squares to 1, namely Il, as was defined in (6.2). To analyse the 
spectral properties of V ( a  = 0) the ‘even’ and the ‘odd’ subspaces have to be treated 
independently. 

Besides the features of the spin- yotator that are connected with the Bloch number 
a these results are in agreement with other findings for kicked tops (Kui et a1 1987, 
1988, Scharf et al 1988). In the following section we concentrate on those features 
of the resonant spin-$ rotator that distinguish it mainly from the kicked tops with 
half-integer spin, namely localisation features resembling Anderson localisation in tight 
binding models. 

7. Numerical results: the localisation-delocalisation transition 

One feature of the resonant spin-0 kicked rotator which makes its investigation worth- 
while is its ability to show a localisation-delocalisation transition of the eigenfunctions 
of the unitary propagator in the p representation. Two recent letters (Izrailev 1988, 
Casati et a1 1989b) investigate this feature and find that there exists one main variable 
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8 L 

Figure 3. The same as figure 1 but for Bloch number a = 0 and coupling 1;1 = lo@. Full 
curves show the predictions of random matrix theory for the CUE. (a) Spacing distribution 
P ( S )  for 401 normalised spacings between adjacent Kramers degenerate eigenvalues of U 
( x : ~  = 7.24). (b) Delta-statistics A(L) .  

8 L 

Figure 4. The same as figure 1 but for Bloch number a = 0 and couplings V I  = lo@, 
u2 = 214. Full curves show the predictions of random matrix theory for the COE. (a) Spac- 
ing distribution P ( S )  for 401 normalised spacings between adjacent Kramers degenerate 
eigenvalues of U ( x : ~  = 8.99). (6) Delta-statistics A(L) .  

that determines the localisational character of the eigenfunctions, namely k 2 / N .  For 
large values of this variable the eigenfunctions are typically completely delocalised 
over the N-dimensional unperturbed basis ( p  repesentation) and random matrix the- 
ory explains the results. For decreasing values of k 2 / N  the eigenfunctions make a 
transition to exponential localisation and the spectrum tends to the Poissonian limit 
(P  = 0) without level repulsion. Moreover, it turned out that after introduction of an 
appropriate measure for the localisational properties of the (not neccessarily exponen- 
tially localised) eigenfunctions, scaling behaviour of these properties can be seen with 
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k2/N being the only relevant variable (as long as k > 1). This scaling behaviour of the 
spin-0 kicked rotator immediately evokes the question as to whether a similar scaling 
behaviour can be found for the spin-; kicked rotator, too. 

To get an impression of how drastically the eigenfunctions change upon changing 
the kick parameter k for fixed N, in figure 5 two typical eigenfunctions of the resonant 
symplectic rotator (2.18) with the potential (6.1) for N = 401 are shown, one for large, 
the other for small k. As it was explained above, we find in the special case of Fp- 
invariance that w," = w;". Therefore it suffices to show only N of the 2N probability 
components. The difference between the two cases is clearly visible : seemingly complete 
delocalisation of the w, for large k in contrast to exponential localisation for small k. 
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Figure 5. Occupation probabilities WE = w;', as defined in the text, for typical eigenfunc- 
tions of U(a)  with N = 401, K = 5, u1 = 0.1, u2 = 0.2, t'3 = 0.3. (a )  M = 50, k = 3.19, 
k2/N = 0.025 (localised case). (b )  M = 8, k = 19.94, k 2 / N  = 0.992 (delocalised case). 

To have a measure for the degree of localisation, we use the definition given 
by Izrailev (1988) (see also Bliimel and Smilansky 1984), which has been applied 
successfully to show scaling properties of the spin-0 kicked rotator (Casati et a1 1989b) 
and which takes the following form in our case: 

with 2 denoting the mean Shannon entropy of the probability distributions wa,, for 
all eigenfunction pairs yx ,  Yva,  of the (2N x 2N) matrix U ( a ) :  

X Z N  denotes the entropy % for the special case of random eigenvectors with a 
distribution given by random matrix theory for the CSE of unitary (2N x 2N) matrices 
(Ku8 er a1 1988) 

SZN = ln(4N) +y - + (1/4N) + O(l/N2) (7.3) 
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with y = 0.5772.. . denoting Euler's constant. With this definition we typically find 
0 I j j H  s 1 with the two extremes of strongly localised and completely delocalised 
eigenfunc%ions. 

In the case of exponeniially localised eigenfunctions with w," of the form 
X 

w i  = Z-'  exp(-2/n - nol/l) z = 2 exp(-2ln - no1/l) (7.4) 
n=-x 

we find for 1 < 1 < N 

With the help of this relation it can then be checked numerically whether, for example, 
the localisation length 1 depends linearly on k 2 / N  as is the case for the spin-0 rotator 
for l / N  small enough. 

1.0 " ' ' ' " '  " " '  1 ' ' ' ' ' " I 
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Figure 6. Delocalisation (7.1) plotted against localisation parameter k 2 / N  for eigen- 
functions of U(a)  as in figure 5 but for different values of N and k :  N = 101 (*), N = 199 
(A), and N = 401 (U). The box shows a magnification of the region of small k 2 / N  values. 

Figure 6 shows the dependence of / j H  upon k 2 / N  for N = 101,'199 and 401 and 
for different values of k.  Although we expect an exact scaling law to hold only in 
the limit N -+ oc), even for these small values of N the scaling features are already 
visible. Comparing these results for the spin-; rotator with previous ones for the spin-0 
standard rotator (Casati et a/ 1989b) two differences are obvious. In the spin-: case 
the limit of strong delocalisation (CSE limit) is reached much faster, upon increasing 
k 2 / N ,  than the strong disorder limit for the spin-0 rotator (COE/CUE limit). The slope 
of the presumptive theoretical scaling curve at k 2 / N  = 0 is much larger for the spin-i 
rotator than for the spin-0 rotator. From figure 6 we infer that a linear relation holds 
between j j H  and k 2 / N  for small values of k 2 / N ,  which leads to the following result for 
the localisation length 

1 = ak2 (7.6) 
with the numerical constant a 2 1.2, which is larger by a factor of about 4 than the 
corresponding value for the spin-0 kicked rotator (Shepelyansky 1986). 
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8. Discussion 

We have shown that the spin-; kicked rotator is the ideal tool to investigate the influence 
of anti-unitary symmetries on localisation properties. Its anti-unitary symmetries are 
easy to control and to interpret physically, and we have given a classification for them 
which predicts the correct statistical properties for eigenvalues and eigenvectors of the 
resonant strongly kicked spin-; rotator. It was shown that the spin-; rotator can be 
mapped to a tight binding model for a spin-; particle moving in a potential with 
diagonal disorder (for irrational z / n )  and with spin coupling terms. Finally it was 
shown that the localisation properties of the eigenfunctions of the symplectic rotator 
for rational z / n  show a scaling behaviour similar to the eigenfunctions of the resonant 
spin-0 rotator. The most prominent difference between them was that the eigenfunctions 
of the symplectic kicked rotator are much more delocalised than the eigenfunctions 
of the spin-0 standard rotator for comparable kick strength. Whether the anti-unitary 
symmetries or the functional form of the kicking potential are responsible for this 
difference has to be investigated for the spin-0 as well as for the spin-; in greater 
detail. 

The results concerning the scaling behaviour of the kicked rotator for a spin-; 
particle and for a spin-0 particle (Casati et al 1989b) should be compared with previous 
numerical results by Feingold et a1 (1985, 1987, 1988), by Frahm and Mikeska (1988a, 
b) and by Izrailev (1986) for the spectrum of the resonant spin-0 standard rotator. 
They clearly showed that there exists a transition from Poissonian behaviour connected 
with exponentially localised eigenfunctions to Wigner-type behaviour as soon as the 
localisation length I ,  for eigenfunctions in the infinite system ( N  -+ CO) becomes 
comparable to the size N of the finite system. As I, cc k2  (Shepelyansky 1986) the 
scaling variable k 2 / N  is proportional to the ratio between localisation length and the 
size of the system. Therefore the present scaling results for the spin-; and similar 
scaling results for the spin-0 rotator (Casati et a1 1989b) concerning the eigenfunctions 
and previous results concerning eigenvalues fit well into a coherent picture. 

It might also be interesting to study the influence of the symplectic symmetry in 
the non-resonant case (5  / n  irrational). This can be investigated conveniently with the 
help of the time dependent problem, for which we have given the quantum map. With 
a trick used recently by Casati et a1 (1989a) to investigate the Anderson transition in 
a (pseudo) three-dimensional tight binding model it seems to be possible to investigate 
localisation properties of the two-dimensional symplectic kicked rotator numerically 
without much effort and to compare it with the two-dimensional spin-0 rotator (Doron 
and Fishman 1988). Of most interest is the question of whether the two-dimensional 
symplectic rotator shows an Anderson transition, as is claimed to exist for a symplectic 
two-dimensional tight binding model (Evangelou and Ziman 1988). 

The localisationdelocalisation transition that we have investigated in this paper 
was for Bloch states (which are delocalised over the whole p axis) within one lattice 
period of length N .  This transition is accompanied by a change in the statistical 
properties of the eigenvalues of the dynamics. The degree p of level repulsion varies 
between a maximal value Po, given by random matrix theory, and 0, the Poissonian 
limit. In the case of the symplectic rotator Po = 4 and therefore P can take on the values 
1 and 2, for example. Numerical results indicate that these intermediate situations can 
be described by random matrix theory only concerning the statistical properties of the 
spectra, but not of the eigenvector components. With the help of a recently proposed 
(Izrailev 1988) and thoroughly tested (Izrailev and Scharf 1989) fitting formula for 
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intermediate spacing distributions, an experimental value for p can be determined 
from spacing histograms and compared with pHPo.  Within error bounds, the two 
quantities agree, which is in favour of the claim that the statistics of the eigenvalues 
show a similar scaling behaviour as p H ,  which reflects properties of the eigenvectors. 
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